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A THEORY OF THE ORIGIN OF MICROSEISMS

By M. S. LONGUET-HIGGINS
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E 9) In the past it has been considered unlikely that ocean waves are capable of generating micro-

seismic oscillations of the sea bed over areas of deep water, since the decrease of the pressure vari-
ations with depth is exponential, according to the first-order theory generally used. However, it
was recently shown by Miche that in the second approximation to the standing wave there is
a second-order pressure variation which is not attenuated with depth and which must therefore
ultimately predominate over the first-order pressure variations. In §§ 2 and 3 of the present paper
the general conditions under which second-order pressure variations of this latter type will occur
are considered. Itisshown thatin aninfinite wave train thereisin general a second-order pressure vari-
ation at infinite depth which is applied equally over the whole fluid and is associated with no particle
motion. In the case of two progressive waves of the same wave-length travelling in opposite direc-
tions this pressure variation is proportional to the product of the (first-order) amplitudes of the
two waves and is of twice their frequency. The pressure variation at infinite depth is found to be closely
related to changes in the potential energy of the wave train as a whole. By introducing the two-
dimensional frequency spectrum of the motion it is shown that in the general case variations in the
mean pressure over a wide area only occur when the spectrum contains wave groups of the same
wave-length travelling in opposite directions. (These are called opposite wave groups.)

In § 4 the effect of the compressibility of the water is considered by evaluating the motion of an
opposite pair of waves in a heavy compressible fluid to the second order of approximation. In place of
the pressure variation atinfinite depth, waves of compression areset up, and there is resonance between
the bottom and the free surface when the depth of water is about (}n+1) times the length of a com-
pression wave (n being an integer). The motion in a surface layer whose thickness is of the order of
the length of a Stokes wave is otherwise unaffected by the compressibility.

Section 5 is devoted to the question whether the second-order pressure variations in surface waves
are capable of generating microseisms of the observed order of magnitude. By considering the
displacement of the sea bed due to a concentrated force at the upper surface of the water it isshown that
the effect of resonance will be to increase the disturbance by a factor of the order of 5 over its value
in shallow water. The results of §§ 3 and 4 are used to derive an expression for the vertical displace-
ment of the ground in terms of the frequency characteristics of the waves. The displacement from
a storm area of 1000 sq.km. is estimated to be of the order of 654, at a distance of 2000 km.

Ocean waves may therefore be the cause of microseisms, provided that there is interference
between groups of waves of the same frequency travelling in opposite directions. Suitable con-
ditions of wave interference may occur at the centre of a cyclonic depression or possibly if there is
wave reflexion from a coast. In the latter case the microseisms are likely to be smaller, except
perhaps locally. Confirmation of the present theory is provided by the observations of Bernard
and Deacon, who discovered independently that the period of the microseisms is in many cases
about half that of the ocean waves associated with them.
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2 M. S. LONGUET-HIGGINS ON A

1. INTRODUCTION

The word ‘microseisms’ is commonly used to denote the continuous oscillations of the
ground of periods between 3 and 10sec. which are recorded by all sensitive seismographs,
and which are not due to earthquakes or to local causes such as rain, traffic or gusts of wind.
Since the original researches of Bertelli in the latter half of the nineteenth century, many
investigations have confirmed the close connexion of microseisms with disturbed weather
conditions, especially with those centred over the sea. Increased microseismic activity tends
to occur simultaneously over large areas of Europe or of North America (Gutenberg 1931,
1932; Lee 1934), and the greatest disturbance is found to be in a coastal region bordering on
a well-developed depression. It is not true conversely (Whipple & Lee 1935) that depres-
sions of the same intensity necessarily give rise to the same amplitude of microseisms. How-
ever, Ramirez (1940), by using a triangular arrangement of seismographs, has shown beyond
doubt that microseisms at St Louis, Missouri, are received from the direction of depressions
off the Atlantic coast. His methods of direction-finding have also formed the basis of a
successful project for tracking hurricanes in the Caribbean area (Gilmore 1946).

Several suggestions as to the cause of microseisms have been put forward, none of which,
however, is entirely satisfactory. Gherzi (1932) has considered microseisms to be due to
‘pumping’ of the atmosphere such as is sometimes shown on barographs near the centre of
intense tropical cyclones. This cause cannot be excluded for storms of tropical intensity, where
observations taken in the path of the storm show that the amplitude may be as much as
0-2mm. of mercury (Bradford 1935). Ramirez, however, has pointed out (1940) that there
is practically no connexion between the microseisms at St Louis and the barograph oscilla-
tions at St Louis or Florissant, even during the close passage of a tornado during March 1938.
Also the periods of the oscillations quoted by Gherzi for the Shanghai typhoon are of several
minutes, which would appear to be too long. It is considerably more doubtful whether
microseisms could be caused by the much milder atmospheric oscillations found in tem-
perate latitudes. The observations of Baird & Banwell in New Zealand (1940) have indicated
amplitudes of only a few inches of air.

Scholte (1943) has sought to demonstrate that microseisms may be generated by atmo-
spheric pressure on the surface of the sea, by showing that the amplitude of the compression
waves generated by an oscillatory pressure spread sufficiently widely over the sea surface
is as great as 10~* times the amplitude of the gravity waves (ocean waves) so generated. The
weakness of this argument is apparent. Ocean waves are not generated by oscillating pressure
distributions of the type described by Scholte, but more probably by a systematic difference
of pressure between the front and rear slopes of the crests of a wave train (Jeffreys 1925).
The effect of a pressure distribution of this latter type, while tending continually to increase
the energy of the gravity waves, would tend to cancel out for the much longer waves of
compression.

An earlier theory, due originally to Wiechert and until recently strongly supported by
Gutenberg, was that microseisms are caused by the impact of waves breaking against a steep
coast. It is argued in favour of this theory that there is a statistical correlation between, for
example, the amplitude of the microseisms at Hamburg and the height of the waves off the
coast of Norway (Tams 1933). This theory will account for some of the facts, although it


http://rsta.royalsocietypublishing.org/

j A Y

Y |

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

THEORY OF THE ORIGIN OF MICROSEISMS 3

involves a coeflicient for the proportion of the wave energy imparted to the ground which
some may consider too high (Bradford 1935). Observations also seem to show that micro-
seisms associated with storms at sea may be recorded several hours before the waves reach
the coast (Banerji 1930; Ramirez 1940; Deacon 1949), so that a further explanation, at any
rate of these latter observations, is required.

Possibly the most natural explanation of microseisms, and one that might have been
previously considered more seriously but for theoretical objections, is that they are generated
by pressure variations on the sea bed due to ocean waves raised by the wind. Itis unfortunate
that in the past use has had to be made of Stokes’s well-known theory of progressive waves,
with the result that the pressure variations on the bottom, at any rate in deep water, appeared
far too small (Gutenberg 1931; Whipple & Lee 1935). The physical reasons for this are
twofold. In the first place the pressure variations in a progressive wave decrease exponentially
with depth, and secondly the wave-length of gravity waves is extremely small compared to
that of seismic waves, so that the contributions from different part of the sea bed effectively
cancel one another. Banerji (1930) sought a way out by supposing that the water motion is
not strictly irrotational, but his analysis cannot be defended. It was also shown (Whipple &
Lee 1935) that the compressibility of the water makes little difference to the general result.
A further difficulty was that investigation of the wave periods usually showed them to be
considerably greater than the corresponding periods of the microseisms. Bernard’s careful
studies of the periods of swell off the coast of Morocco (1937, 1941 4, b) indicated that they
were in fact about twice the microseism periods. In a comparison of the Kew seismograms
with records of waves taken at Perranporth in Cornwall, Deacon (1947) independently
arrived at the same conclusion.

It has been pointed out (Longuet-Higgins & Ursell 1948) that Miche, in a theoretical
study of wave motion (1944), discovered that the mean pressure on the bottom beneath a
train of standing waves is not constant, as in a progressive wave, but fluctuates with an
amplitude independent of the depth and proportional to the square of the wave height. This
oscillation is of precisely the type required for the generation of ground movement, for not
only is it unattenuated with depth (and is therefore the most important term at depths greater
than about half a wave-length) but also, being in phase at all points of the bottom, it is suit-
able for producing long seismic waves. A further remarkable fact is that the frequency of
this pressure variation is twice the fundamental frequency of the waves. Owing to the cus-
tomary neglect of terms of higher order than the first, this term had been overlooked, the
standing wave being in the first approximation the sum of two progressive waves of equal
amplitudes travelling in opposite directions. A shorter proof of Miche’s result, bringing to

t An attempt was made by Banerji (1935) to show that the compressibility of the water would allow
pressure variations of the same period as the surface waves to be transmitted to depths great compared with
the wave-length. However, an error in his analysis was pointed out by Whipple & Lee (1935, p. 295).
In the same paper (1935) Banerji describes experiments in which he set up waves of length 2 to 6 cm. in
tanks of depth 84 to 108 cm. and observed the oscillations in a tube of diameter 4 cm. sunk to varying depths
and open at the lower end. Appreciable oscillations were observed at all depths. Banerji’s results are difficult
to interpret, but it seems unlikely that the compressibility of the water can have affected experiments on
this scale. J. Darbyshire has also pointed out that the period of the oscillations shown in plates XXVII and
XXVIII of Banerji’s paper lies between 0-6 and 0-75 sec.; these cannot have been of the same period as the
surface waves unless the latter were of length 56 to 88 cm., or comparable with the depth and width of the

tank.
1-2


http://rsta.royalsocietypublishing.org/

A\

/ y

A

a
{ B
L 2

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

yA \
V. \
AL A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

4 M. S. LONGUET-HIGGINS ON A

light the physical reasons for the existence of this pressure oscillation, was given by Longuet-
Higgins & Ursell (1948). A generalization of this proof led the present author to the con-
clusion (see § 3) that variations in the mean pressure over a wide area arise as a result of the
interference of groups of waves of the same wave-length, but not necessarily of equal ampli-
tude, travelling in opposite directions.

For a few years previously Bernard (1941 g, b) had held the view, unsupported at that time
by hydrodynamical theory, that standing waves (Fr. clapotis) were the cause of microseisms.
He had suggested that favourable conditions for standing waves would arise at the centre of
a cyclonic depression or possibly off a steep coast where there was reflexion from the shore
(this idea is to be distinguished from Wiechert’s surf theory, although similar conditions
would favour the generation of microseisms on either hypothesis). Bernard does not appear
to have foreseen the doubling of the frequency of the unattenuated pressure variations in
a standing wave, for he is inclined to suggest other causes for the difference between the
frequencies of the microseisms and those of the waves (Bernard 19414, p. 10).

In the present paper we shall first investigate, in §§ 2 and 3, the physical reasons for the
existence of unattenuated pressure variations of the type occurring in the standing wave and
the general conditions under which they will occur; in § 4 the effect of the compressibility of
the water on the wave motion will be considered ; and in § 5, using the results of §§ 3 and 4,
it will be shown that the second-order pressure variations due to surface waves are of the
right order of magnitude for producing microseismic oscillations of the sea bed. We shall also
consider briefly under what meteorological circumstances waves suitable for generating
microseisms may be expected to be produced.

2. PRESSURE VARIATIONS IN A PERIODIC WAVE TRAIN

2:1. The attenuation of pressure variations and particle velocities with depth

Although the second-order pressure variations in a standing wave in deep water are not
attenuated exponentially with the depth, the unattenuated terms are not associated with
any motion of the particles. That this is possible may be seen as follows. Let rectangular
co-ordinates (x,y, z) be taken with the origin in the undisturbed level of the free surface and
the z-axis vertically downwards. For simplicity we shall consider motion in two dimensions
(x,z) only; similar arguments are, however, applicable to motion in three dimensions. We
assume that the motion is irrotational, and that it is periodic in the x-direction with wave-
length A. The components of velocity (u,w) are given by

_ % %
=m0 YT T (L)
where, since the fluid is incompressible, we have
du  Jdw
2 = —(— —_— ) =
vig = — (5ot 5) = o )
The equations of motion may be integrated (see Lamb 1932, §20) to give the Bernoulli
equation _
Eote_ge — S faut)+00) 0
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THEORY OF THE ORIGIN OF MICROSEISMS 5

where p denotes the pressure, p the density, g the acceleration of gravity, p, the pressure at
the free surface (supposed constant) and 6(¢) is a function of the time ¢ only. ¢ itself contains
an arbitrary function of ¢; but this may be made definite by specifying that the mean value
of ¢ with respect to x, taken over one wave-length, is zero. Similarly, by a suitable choice
of axes the mean value of # may be made zero (both conditions may be satisfied for all values
of z and ¢). Then, since ¢ is a harmonic function periodic in x and bounded when z>0, it
may be shown that in water of infinite depth ¢, « and w all diminish with z at least as rapidly
as exp (—2nz/A) (to all orders of approximation). Therefore when z exceeds about half
a wave-length we have from equation (3)

P=be gz — 0(1). (4)
p
Thus, although the particle velocities in any irrotational periodic motion must decrease
exponentially with the depth, the pressure may still be a function of the time ¢. The pressure
variation (4), being simultaneous over the whole fluid, is the same as if a uniform pressure
6(t) were applied to the free surface, the fluid being at rest. 6(¢), being the limit of (3) when
z tends to infinity, may be called the pressure variation at infinite depth. 6(¢) does not in
general vanish, though in one case, namely, that of the progressive wave, we may show that
it is a constant; for in equation (3) every term except (¢) is then a function of (x—ct) and z,
where ¢ is the wave velocity. Therefore ¢ also is a function of (x—ct). Hence 6, being in-
dependent of #, is independent of ¢ also.
In general, since 6(¢) is in phase at all points, there is a fluctuation in the mean pressure
with respect to x on any plane z = constant. Thus if p denote the mean pressure with respect
to x in the interval 0<<x<<A we have from (3)

_ A
? pﬁs —gr=—1 f Hutu?) dat-0(1) (5)

(since the mean value of ¢ vanishes by hypothesis) ; and for large values of z we have

Bl gz = 0(0). (6)

The occurrence of an unattenuated pressure variation at infinite depth is therefore closely
associated with a variation in the mean pressure on the plane z = constant. As wesaw in § 1,
it is the variation in the mean pressure which is likely to be of physical importance in pro-
ducing seismic oscillations of the sea bed. /

2:2. Evaluation of the mean pressure

We shall now obtain a general expression for the mean pressure over a given area of the
plane z = constant, from which the special cases of the standing and the progressive wave
may be very simply derived. It will not be assumed, in the first place, either that the motion
is irrotational or periodic. Some of the equations will therefore be applicable to the more
general types of motion to be discussed in § 3.

A very general relation between the vertical motion of a mass M of fluid consisting always
of the same particles and the vertical forces acting upon it may be obtained as follows.
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6 M. S. LONGUET-HIGGINS ON A

Suppose that (x, z) are rectangular co-ordinates referring always to the same particle of the
fluid in the Lagrangian manner, so that x and z are functions of the time ¢ and of the co-
ordinates (x,,z,) at some fixed instant, say ¢ = 0. The equation of motion in the vertical
direction is

ap 10%
L—o0-—3 5% (7)
and the equation of continuity may be expressed in the form
pdxdz = pydxydz,, (8)
where p, is the density when ¢ = 0. Now we have
0%z 0%z 02 02
fMpW dxdz = JM'OOW dxydzy = Et—szpoza’dezo = a—ﬁfMpza’xdz. (9)
Therefore on integrating equation (7) over the fluid M we find
ap 02
fﬁz—dxdz~ fMgp drdz = — 5 f prds. (10)

In evaluating the integrals in equation (10) we may treat x, z and ¢ as the independent vari-
ables, though the boundaries of M are now functions of £. The right-hand side of (10) may

2
clearly be written —é%?g , where V'is the potential energy of the fluid M.

Suppose now that, in any wave motion at the free surface of an incompressible fluid, 4/
denotes the body of fluid which at time ¢ = 0 is contained between the free surface z = {,
the horizontal plane z = z’ and the two vertical planes ¥ = x, and x = x,. If p" denotes the
pressure in the plane z = z', and p, the constant pressure at the free surface, we have, at the
initial instant,

d woo -,
[ Lasdz=[" (4 ~p) de = (5 —p) (1), (1)
M %1
where p’ denotes the mean value of p” with respect to ». Similarly we have, since p is assumed
to be constant, ’ “ v
[ epiniz—gp [ (& —=0) ds = o2y x) —gp |G (12)

To evaluate the third term in equation (10) we need an expression for the integral at times
other than the initial instant. Suppose then that at time ¢ the fluid M is bounded by the

wrlaces 2 — ), 2=+l x=G(z) and x=E(z0),
where {'(x,0) =0, £(z,0)=2x, &(z,0) =ux,. (13)
The (x,z) co-ordinates of the intersections of the surfaces z = {', (' +{’) with the surfaces
x = £,, £, may be denoted by (a0}, 7y), (21,71)5 (@, ¥2), (23, 72) respectively, these being func-
tions of ¢. Then we have
o 23 t yi r o >

[ ztsa= "3 r0ran—["yedst [ bz | bizde e~y - arb el

M oy o Ve Y1 (14)
On differentiating twice with respect to ¢ we find

2 as g2 o2 g2 72, Vi,
0 f zdxdz =f ’ gﬁ%(z'—l—g')?dx—« g-ﬁ%zdﬂ—f é}zdz—f £ zdz
M oy a 2 1

ot
+2[‘5‘5’z7.’é?’;“5‘{7"i7’;”‘5‘27"27’2“}“5‘17.’171]» (15)
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THEORY OF THE ORIGIN OF MICROSEISMS 7

where a dot denotes partial differentiation with respect to ¢. At the initial instant we have
Uy =0y =Xy, OGy=0p=2%p Jj=7y=2" (16)

- Therefore, if {; and {, denote the values of { when x = x; and x,, equation (10) becomes

{

pl__lbs . l X2 ﬁ _I ,.—
T, % ,};“:;;J [atz(%—?—% )—z'€ gC]dx

2
xz'_'

———L[ : gzzdz—J‘z £zdz | —
&

[da7sye— 17 Y1 —CGaTayatéyPiyi]. (17)
X=X LJ g, *1
"The above equation may be putinto a form which is independent of the initial instant chosen.
For if («',w") denote the components of velocity in the plane z = z’ we have, at the initial
instant,

‘g*;é (3% = U&= we (18)

Also by considering D?({’ —z)/D#?, where DDt denotes differentiation following the motion,
we find

#r . a 1,1 ‘
¢ =w~5ﬁ-€(uw). (19)
Similarly b= i~ (uw) (=12, (20)

where (u;,w;) are the velocity components in the plane ¥ = x;. Since (&,7,;) and (&, 7;) are
equal to the components of velocity at (x;,{) and (x;,z'), we have finally, after integrating
by parts and dropping the dashes, /

X=Xz

1
Xo—X)

Plge= [Tt —w—z—gl v [ [ ) do— ().

X=X1
(21)
"The above equation is now valid for all values of z and ¢. In equation (21) the first group of
terms would give the mean pressure on the plane z = constant if the planes x = x,, x, were
assumed to be vertical barriers. The second group of terms gives the correction due to the
motion across these planes.
By allowing #, to tend to x, in equation (21) an expression for the pressure at any given
point can be obtained. Thus
p—p >, AT,
Pl g = g (00— —ziv—gl— 5[ [ (a2 ) o (uwz)zzg]. (22)
It may easily be verified that in a periodic wave motion in deep water the first-order terms
on the right-hand side of (22) decrease exponentially with the depth.
Suppose now that the motion is periodic in x with wave-length A. If we write &, = 0,

x, = A in equation (21) the second group of terms then vanishes identically. Further, if the
origin is assumed to be in the mean surface level we have

f:gﬁ dx = 0; (23)


http://rsta.royalsocietypublishing.org/

A\

/ y

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A \
1~

AL A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

8 M. S. LONGUET-HIGGINS ON A
and since the net flow of water across the plane z = constant is zero we have also
A d (A
JO zdx = z(—?}j‘o wdx = 0. (24)
Therefore the mean pressure over one wave-length is given by
b—ps_ _lfjll 2 _lr 2
’ 82=77n 02C dx 1 Owa’x. (25)

If, in addition, the motion is irrotational we find by comparison with (5) that the function

0(¢) is given by 192 X 1A
0m=XﬁL%&wﬁiﬁmeam. (26)
It may be verified that the second term is independent of z, for
(Y o0 o (M 0w duy, A
52[0 (u —w)dx-—fo (ua—;—!—wa)dx—[uw]o, (27)

which vanishes by the periodicity of the motion. In deep water, since # and w decrease
exponentially with depth, the pressure variation at infinite depth is given by
o) = 1 3| A (28)
Adtt) #2

In water of constant finite depth /% the vertical velocity w vanishes when z = k. From (25)
we see that the mean pressure variation on the bottom is also given by the right-hand side
of (28). Thus both the pressure variation at infinite depth and the mean pressure on the
bottom in the case of constant finite depth, depend on a second-order function of the wave
amplitude, closely associated with changes in the potential energy of the wave train.

It will be noticed that the equations so far obtained are exact, and that no assumptions
depending on the smallness of the wave amplitude have been made.

2:3. The standing wave and progressive wave

We shall now use the formulae of the previous section to evaluate the mean pressure on
the bottom in some special cases of wave motion. This may be done, as we shall see, by
consideration of the first approximation only.

Let the water be of constant depth /. Consider a motion which in the first approximation
consists of two progressive waves of equal wave-length A and period 7 travelling in opposite
directions. The equation of the free surface is given by

¢ = a, cos (kx— ot) +ay cos (kx+-at) 4 O(a%k), (29)
where k = 2a/A, ¢ = 27/ T and 0% = gktanhkh , (30)
(Lamb 1932, p. 364). The last term in equation (29) represents a remainder of second or

higher order in the wave amplitudes ¢; and a, which it will not be necessary to evaluate.
When z = A, w vanishes, and so from equation (25) the mean pressure §, on the bottom is
given by 7 _p " —“La—zf
T, ST

0% |

:a—téz

A
. 1 a, cos (kx—ot) +a, cos (kx+ot) ]2 dx+ O(a’o?k?)

(a?-+ a3+ 2a, a, cos 20t) + O(aPo?k?)

= —2a,a,0%2cos 204, (31)
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THEORY OF THE ORIGIN OF MICROSEISMS 9

to the second order of approximation. Thus the mean pressure fluctuation on the bottom is
of twice the frequency of the waves and proportional to the product of the wave amplitudes.
For a given period T it is also independent of the depth 4.

Two special cases are of interest. First, when the amplitude of one of the opposing waves
is zero, that is, in the case of a single progressive wave, the right-hand side of equation (31)
vanishes. The mean pressure on the bottom is therefore constant. Secondly, when the
amplitudes of the two waves are equal and

@y =, = 1, (32)
say, we have a standing wave given by
{ = acos kx cos at+ O(a%k). (33)
From equation (31) we have then
Dubs_ gh = —L1a%s? cos 20t. (34)

p
Therefore in a standing wave the mean pressure on the bottom varies with twice the fre-
quency of the original wave and with an amplitude proportional to the square of the wave
amplitude.

Equation (34) was obtained by Miche (1944, p. 73, equation (85)) after evaluating the
second approximation to the wave motion in full. '

A physical explanation of these two results, and of the difference between them, may be
given as follows. Consider first the standing wave given by equation (33). Whent = (n+3) 7,
n being an integer, the wave surface is approximately flat. The centre of gravity of the whole
wave train is therefore at its lowest point. On the other hand, when ¢ = T the wave crests
are fully formed and the centre of gravity has risen, since water has been transferred from
below to above the mean level (this is equivalent to saying that the potential energy is
increased). This raising and lowering of the centre of gravity occurs twice in a complete
cycle. But the vertical motion of the centre of gravity of any mass of fluid is determined
solely by the vertical external forces acting upon it. Of these, the force due to gravity is
constant, and the pressure on the free surface supplies a constant additional downwards
force. There remains the pressure on the bottom, which must therefore fluctuate in a similar
manner, with twice the frequency of the waves.

In a progressive wave, on the other hand, similar considerations show that the mean
pressure on the bottom is constant. For the potential energy, and hence also the centre of
mass, of the whole wave train remains at a constant level throughout. There can be therefore
no fluctuation in the mean pressure on the bottom.

It should be possible to verify formulae (31) and (34) quite simply by experiment, since
these terms represent the only pressure variations measurable at a depth of more than half
a wave-length. The water should be almost still at this depth, so that the formation of eddies
round the measuring apparatus would be avoided. A standing wave could be produced in
a long wave tank by the reflexion of a wave train from a vertical barrier at one end of the
tank. If the inclination of the barrier to the horizontal were varied, reflected waves of
different amplitude would be obtained, since for small inclinations some energy would
almost certainly be absorbed at the barrier itself. In the first-order theory of surface waves
the absorption of energy at the barrier cannot be taken into account without assuming a
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10 M. S. LONGUET-HIGGINS ON A

singularity at the origin, and the amount of energy absorbed is indeterminate. However,
by the present method the coefficient of reflexion could be determined experimentally,
since the pressure variation on the bottom (at a few wave-lengths from the barrier) is directly
proportional to the amplitude of the reflected wave. Hence also some indication could
probably be obtained as to the amount of wave reflexion taking place at a steep coast and
from beaches of different gradients.

3. GENERAL TYPES OF WAVE MOTION

Perfectly periodic wave trains of standing or progressive type rarely occur in practice,
and in the present section we shall consider the pressure variation in wave motions of more
general type. When the motion is not perfectly periodic in space the pressure variation at
infinite depth, in the sense of § 2-1, no longer exists, but expressions may still be found for
the mean pressure or the total force over a given area of the plane z = constant. These assume
a simple form provided that the area is large enough for the motion across the boundaries
to become negligible.

3:1. The force on a given area of the plane z = constant

Still considering motion in two dimensions only, let F denote the variable part of the total
force, per unit distance in the y-direction, acting on the plane z =z’ in the interval
—R<x<R, 1e. _

F_ 2R(£:£"—‘-—gz), (35)
p p

where 7 is the mean pressure on the plane z = 2’ in this interval. Then from equation (21)
we have

T I TR T A

Now since the flow of water across the horizontal plane z = z’ (—R<x<R) is equal to the
net flow across the vertical planes ¥ = =R (z>2"), we have

J‘:zwa’x = [zf:adz]:, ' (37)

where / denotes the depth of water (not necessarily constant); if the depth is supposed
infinite, the upper limit of the integral must be replaced by co. Similarly, if the mean
level of the free surface z = { is zero at time ¢ = 0 we have

j:g&lx = [f; a’tf;gudz]fk. (38)

Hence from equation (36), after integrating by parts,

% - ji{ [g—;z (302 — w2:| dx— [Zf:ddz—gf;dtf: udz]ljR
”U: {f:ddz+”w} dz— (”wz)z=€:|:- (39)
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THEORY OF THE ORIGIN OF MICROSEISMS 11

Let us consider the relative magnitudes of the terms in equation (39). We suppose that
the motion is wave-like, in the sense that the energy is nearly all confined to a narrow range
of frequencies in the frequency spectrum (as defined in § 3-2) ; and that the mean frequency
/2m corresponds to a wave-length A which is small compared with R. In general, the relative
phase of the motion at two widely separated points of the x-axis will be random. We mays,
however, suppose that the motion is regular and periodic over any interval of the x-axis
less than or equal to 2R,, say. We suppose also that the motion is initially confined to an
interval —R,<x<R, (where R, may be very great compared with R,), that is, that the
elevation and vertical velocity of the free surface at points outside this interval are initially
zero. There will be three distinct cases:

Case 1. R<R, i.e. the motion is regular over the whole interval —R<x< R. Then

Rro? . 2
Loz (30%) —w? | dx (40)
is of order a202R, where a is the maximum wave elevatlon If we assume for the moment

that  and w are of order ao and that
[ f u z:, (41)

is of order aoA for all z, the remaining terms in (39) are of order ao?Az or ao?A2 at the most
(if g is of order A02). Hence if R//c and R/z were sufficiently large we should have

— = f l:(?tz ~w2:| dx (42)

approximately. It must, however, be verified that these second-order pressure variations,
which are in phase over the whole interval, do not produce any significant motion across
the planes x = £ R. Now if we consider the displacement produced by the pressure dis-
tribution p [2a%0%cos20t (|x|<R),
p {0 (I%]>R),
acting on the upper surface of deep water we find that the velocities in the planes x = + R
are of order a%r/A (we ignore a logarithmic singularity at z = 0, which is due to the local
discontinuity in pressure), and that the total flow (41) is of order %7 log (R/A). The assump-
tion that (41) is of order independent of R therefore needs slight modification in this case,
but since log (R/A) is small compared with R/A the validity of equation (42) is not affected.
When z is small compared with A the approximation (42) is valid under the condition
Ra/l*<1. However, the first-order terms in (39), taken together, may be expected to
decrease rapidly with the depth, and when z is greater than about A the largest terms in the
remainder will arise from the unattenuated pressure variations of second order. Hence
(42) will be valid under the less restrictive conditions R/A>1 and R/z>1. Since the second
term in (42) will be small compared with the first we shall then have

F J%2 R
p T or) (44

(43)

In particular (44) will be valid if z is of order A and R/A>>1.
Case 2. Ry <R<R,. In this case suppose the interval — R < x< R to be divided into smaller

_intervals of length less than or equal to 2R;. We assume that the motion in each of the smaller
2-2


http://rsta.royalsocietypublishing.org/

A

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A \
I

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

12 M. S. LONGUET-HIGGINS ON A

intervals is regular but that the phase differences between successive intervals are random.
Since the sum of n vectors of comparable magnitude in random-phase relationship with one
another increases like 7! the integral (40) will be of order a?s2R, (R/R,)}. If we assume that
the velocities are bounded and that the total flow across any plane x = constant is of order
aod or a®clog (R,/1) at most, equations (42) and (44) will be valid under conditions similar
to case 1; in particular, (44) will hold if z is of order A and (RR,)*/A> 1.

Case 3. R>R,. By allowing R to tend to infinity an exact expression for the total force F
over the whole plane z = constant may be obtained. The velocity potential of the motion
due to an initial elevation of the free surface concentrated in the line x = z = 0 is propor-
tional to gtz(x%+2z2)~!, when g?(x2+22)* is small (see Lamb 1932, §288). A similar result
will hold when the initial disturbance is distributed over a finite interval of the x-axis.
Hence for very large R the velocities across the planes ¥ = -4 R will initially be proportional
to R~2, and the total flow (41) will be proportional to R~!. The terms in (39) to be evaluated
at the planes x = 4 R therefore tend to zero. But since the total potential energy is finite,
we may assume that the first integral in (39) converges. Hence the total force F over the
whole plane is given by

F © g2
= f - [W (182) ~w2:| dx. (45)
When z is greater than about 1A the second term in the integrand will be small compared
g 2 g P
with the first, so that F 2 (=
| ;:ﬁf 12dx (46)

approximately.

The previous results may be extended without difficulty to motion in three dimensions.
Let p denote the mean pressure on the plane z = constant inside the square § given by
—R<x<R, —R<y<R, and let F denote the variable part of the total force acting on the
plane inside S, i.e. F

— = 4R2(15——~_‘b S — z). 47

p e (47)

If the motion inside S is assumed to be wave-like with mean wave-length A then we may
establish that

ST [m e —u sy (48)

under similar conditions; in partlcular, if z is comparable with A, and R/A and (RR,)*/A are
both large compared with unity, where 2R, in the side of the largest square over which the
second-order pressure variations are effectively in phase. Since the motion diminishes
rapidly with depth, we shall have in this case also

- f f 12dxdy. (49)

If it is supposed that the motion is 1n1t1ally confined to a finite region of the (x,y) plane we
may show that the motion produces a force F over the whole plane given by

P f—mfﬂoo [aﬂ w2:| dxdy. (50)

Again, when z is greater than about 31 we have approximately

- f f  adady. (51)
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THEORY OF THE ORIGIN OF MICROSEISMS 13

3-2.  The two-dimensional frequency spectrum

In order to be able to describe the motion of the sea surface in terms of its frequency
characteristics, we shall now introduce the two-dimensional frequency spectrum. The mean
pressure, or total force, over a large area may be derived immediately from the frequency
spectrum owing to the connexion of the mean pressure with the potential energy of the waves.

Any continuous and absolutely integrable function f{x, ) of two variables may be expressed
in the form

fiey) =R f . f " Flu, v) 6wt dy dy (52)
or flxy) = f f 0) 4 F* (— 1, —v)] @ +ok) gy do, (53)
where L[F (4, 0) + F*(—u, —v)] = (k/2m)? f ) f " flxy) etk g dy, (54)

provided that the right-hand side of (54) is also absolutely integrable (Bochner 1932,
§ 44). In the above equations R denotes the real part and F* denotes the conjugate
complex function of F. The value of

| HFw0) —F*(—u,—0)] . (59)
is still indeterminate.

~ Letz = { be the equation of the free surface in any wave motion in two horizontal dimen-
sions. We shall assume the general conditions necessary for the validity of the following
work, and in particular the possibility of differentiating under the integral sign. Suppose
then that the values of { and d{/dt at the initial instant # = 0 are expanded in the forms

Qim0 = mf:) f:} 4 eiwks+oky) gy gy, (56)
a§ © w0 )
(‘%)ho = ERf_wf_w B itk +vky) gy dly, (57)

A and B being functions of (z,v). We may impose the further condition
B =154 (58)
where ¢ is the positive function of # and v given by
0% = (u?+v?) gk tanh (u?+02)t kh. (59)
By equation (54) we have then, using equation (58),

BA A7) = (bf2n2 [ [ (Qugertonrn dudy, - (60)
1 © [+ aé’ .
L(ioA—igd*) — (k/2m)? f f (Zﬁ),:()e kst k) g gy, (61)
where 4_ denotes A(—u, -v) These last equations are equivalent to the single equation
1 ag e~ i(ukx+v
— (f2m) f f (§+w . t)t e d . (62)

Consider now the expression

g = mfw on A eiukx+vky+ot) dudv, (63)
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14 : M. S. LONGUET-HIGGINS ON A

where 4 is determined by (62). The expression under the integral sign represents a wave

whose crests are parallel to the line w4y — 0, (64)

and whose wave-length A is given by
2m

(w>+0v2)t k"
By equation (59) this wave satisfies the period equation for waves in water of constant depth
k, and hence 7 is also a solution, to the first order of approximation. But from (5) and (57)
we have o

Oo = o (3) = (51) - (66)

Now an irrotational motion is uniquely determined by the initial values of the surface
elevation and its rate of change with time (for the difference between two motions with the
same initial conditions has initially no kinetic or potential energy). It follows that { = 7, i.e.

A= (65)

é’ — ERJWO Jm Aei(ulcx+vky+zrt) dua’v (67)

for all times 2.

Any given free motion of the sea surface may therefore be analyzed (in the first approxi-
mation) into the sum of a number of wave components of all possible wave-lengths and
travelling in all possible directions. This analysis, by equation (62), is unique. Each wave
component corresponds to a vector OP in the (x, y) plane drawn from the origin to the point
P(—uk, —vk). The direction of OP gives the direction of propagation of the wave, and the

length of OP is, from equation (65), equal to 27 divided by the wave-length. Wave com-

ponents of the same length will correspond to points P lying on the same circle centre O,

and diametrically opposite points will correspond to wave components of the same wave-

length but travelling in opposite directions. Such pairs of wave components play an im-

portant part in the following theory and will be called opposite wave components.
Equation (67) may also be written in the form

{= f ) Jm (At A% eiot) et dydy. (68)

Hence by an extension of the Parseval-Plancherel theorem (Bochner 1932, §§ 415 and
44-8) we have

f ) f " Cdrdy — (21)k)? f ? f " H(A et A¥ emit) |2 dudy, (69)

since the integral on the left-hand side is convergent. After simplifying the right-hand side,
we have

f ‘: f °°w 12 dedy — R(n/k)? J °°w f °°w (AA* 4 AA_ ey dudb. (70)
Thus the potential energy of the motion is given by

Rog(n/k)? f °°w f °°m (AA* - AA_ e dudy. (71)
Similarly, we find for the kinetic energy

Rog(n/k)? f : f : (AA* —AA_ ey dudb, (72)


http://rsta.royalsocietypublishing.org/

A\

/ y

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A \
1~

AL A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

THEORY OF THE ORIGIN OF MICROSEISMS 15

and so the total energy is given by
2p(nk)? f AA* dudy (73)

(the above integral being real). The total energy therefore depends only upon the square of
the modulus of the wave amplitude A(u,v). On the other hand, both the potential and the
kinetic energies separately vary with the time and depend on the product 44._.

3:3. Pressure variations in terms of the frequency spectrum

We are now in a position to determine the general conditions for a variation in the mean
pressure or total force acting on a large area of the plane z = constant. We consider first
the simpler case when the area includes the whole (x,y) plane.

From equations (68) and (69) we have

2 0 0
gzm(ﬂ/k)zgﬁ [7]7 (aas+ aa_etm) dudo

= —R4(ufk) J J AA_o? e, (74)

Now 4 and A_ are the complex amplitudes of opposite wave-conponents in the frequency-
spectrum. It follows from (74) that

(1) Variations in F arise only from opposite pairs of wave components in the frequency
spectrum.

(2) The contribution to F from any opposite pair of wave components is of twice their
frequency and proportional to the product of their amplitudes.

(3) The total force F is the integrated sum of the contributions from all opposite pairs of
wave components separately.

A wave group may be defined as a motion in which most of the energy is confined to a
small region of the («,v) plane, excluding the origin. Thus a single group of waves will not
cause variations in the total force F'. In order that F should be appreciable the motion must
contain at least two wave groups which are opposite, in the sense that some wave components
of the first group are opposite to some wave components of the second.

In practice we must consider the force F over only a finite region of the (x,y) plane. Let
this be the square S (—R<x<R, —R<y<R). We define a hypothetical motion {’ such that
atany time {’ and ¢’ /0t are equal to the corresponding values of { and /0t inside S and zero
outside. This motion will not satisfy the equations of motion, especially near the boundaries
of S, but we shall now have

atzf—ztf 2 dxdy = atzf j 2 dudy. (75)
We also define 4'(u,v; t) by the equations

C’ — ?RJ‘OO on A’ eiukx+vky+ot) dudv,
o (76
_07 — mf f Z'O-A' ez'(ukx+vky+o't) dudy.

Then we have, as before,

A’ ¢t = (k/2m) f f (C +z}7 ‘;é;) e~ iwkx k) ly dy. (77)


http://rsta.royalsocietypublishing.org/

A A

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

N
A \
I

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

16 M. S. LONGUET-HIGGINS ON A

If the actual motion is given by equation (67) we have on substitution in (77)
A'(u,v; 8) = (k/2m) f f dxdyf f du, dv,
X E[A(u v ) (1 +£1) e—i[(u—u1)kx+(u—1)1)ky+(0~0'1)t]
2 1,71 .

o ,
+A*(ulo UI) (1 . 7;1) e—z[(u+u1)kx+(v+v1)ky+(o'+o';)t]:l , (78)

where o is written for o(u,, ;). Since % is still at our disposal we may put
2m/k = 2R. . (79)
Then, after integration with respect to ¥ and y, we find

(4,3 ) f J‘ (u,0,) ( ‘7_) sin (u—u,) m sin <v—vl)we~i@‘“l)lduldv
T2 (u—u)m  (v—v)7 !

1= [® o\ sin (u+u,) wsin (v+v) 7T,
- * -1 1 1 io+a)i
+2J_wf~wA (ul,vl)( 0) aiu)m  (oro)7 e duy dv,
=1I,+1, (80)

say. Now by hypothesis the frequency spectrum of { consists chiefly of waves whose wave-
length, given by (65), is small compared with 2R. From (79) it follows that A(u;,v,) is
appreciably large only when (#}-+9?)! is large. But the factors in the denominators of
I, and I, make the integrands small except when (u;,v,) = (u,v) in the first case and
(uy,0;) = (—u;; —v;) in the second. In either case o, = 7, so that the contribution from 7, is
small, while that from I; gives

PN N sin (u—w,) msin (v—v)m
A (u,v; t)fj“wf_w (uy, 1) a—u)m (o—o)m e duydv,. (81)

Although A4’ is dependent upon ¢, the integrals for dA4'/ds, d24'/df2, ... contain factors
(0—a,), (¢0—a;)% ... which are small over the critical range of integration near (u,v). These
expressions are therefore small, and 4" is only a slowly varying quantity.

From equations (75) we have then

F_sn (/)2 aﬂf f (A" A%+ A A e2t) dudy

— R4 (k)2 f f A4’ 02 €20 dudy, (82)

The expression for the force F over a finite area is therefore similar to that over the whole
plane, except that the original spectrum 4 is replaced by the new spectrum 4’. Equation
(81) shows that 4’ is the weighted mean of ‘neighbouring’ wave components in the original
spectrum. Conversely each wave component in the original spectrum contributes to
‘neighbouring’ components of the new spectrum. From equations (65) and (79), the number
of wave-lengths of any wave component intercepted on the x-axis inside §'is #, and the corre-
sponding number on the y-axis is v. The width of the spread pattern in (81) is of order unity.
Hence, for this purpose, ‘neighbouring’ wave components are those such that the number of
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THEORY OF THE ORIGIN OF MICROSEISMS 17

wave-lengths intercepted on any diameter of S does not differ by more than 2 or 3 from the
corresponding number for the original wave component.

The replacement of the ‘sharp’ spectrum 4 by the ‘blurred’ spectrum 4’ may be con-
sidered as the result of our inability to define the spectrum exactly from a knowledge of the
conditions over only a limited region. For practical purposes, however, the amount of
blurring will not usually affect the frequency characteristics of F to a very great extent.

4. WAVE MOTION IN A HEAVY COMPRESSIBLE FLUID

In the present investigation the water has so far been treated as incompressible. This
assumption is only valid so long as the time taken for a disturbance to be propagated to the
bottom is small compared with the period of the waves, that is,

hle<T or h<cT, (83)

where ¢ is the velocity of sound in water. For ocean waves 2 may be of the order of several
kilometres, ¢ is about 1-4 km./sec. and T lies between about 5 and 20sec. The condition (83)
is therefore no longer satisfied. It follows that in practice the compressibility of the water
must be taken into account.

Surface waves in a heavy compressible fluid were first considered by Pidduck (1910, 1912)
in connexion with the propagation of an impulse applied to the surface of the water. His
method involves the neglect of squares and products of the displacements and is thus only
a first-order theory. The relation obtained by him between the period and wave-length of
the waves was discussed by Whipple & Lee (1935), who showed that for waves of a few seconds’
period two possible types exist. On the one hand there is a motion approximating very nearly
to an ordinary surface wave in incompressible fluid, in which the particle displacement
decreases exponentially downwards (to the first order). This may be called a gravity-type
wave. On the other hand, there are long waves controlled chiefly by the compressibility
of the medium, and hardly attenuated at all with depth. These may be called compression-
type waves. Stoneley (1926) and Scholte (1943) have in addition taken into account the
elasticity of the sea bed. Here again the two types of wave may be distinguished.

The pressure variations of particular interest to us are, however, of the second order, and
to investigate these it will be necessary to work to the second approximation. In the following
we shall consider a case of special interest, namely, the motion which in the first approxima-
tion is a standing wave of gravity type. We shall find that in the second approximation long
compression-type waves appear. One consequence of this is that in the second-order theory
pure gravity-type or pure compression-type waves do not in general exist; the one type of
wave cannot exist without the other. As a compensating advantage, however, our work
leads us to the distinction of two definite regions of the fluid in one of which gravity, and in
the other compressibility, is the controlling factor.

4:1. General equations

Take Cartesian axes (x,y,z) with the origin in the undisturbed free surface, the y-axis
parallel to the wave crests, and the z-axis vertically downwards. It is assumed that the
motion is periodic in the x-direction with wave-length A. Let z = 4 be the equation of the
rigid bottom and z = { the equation of the free surface. Also let u = velocity, p = pressure,

Vol. 243. A. 3
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18 M. S. LONGUET-HIGGINS ON A

p = density, and let p, and p, denote the (constant) values of p and p at the free surface. We
shall assume that viscosity is negligible and that the velocity is irrotational, so that

u = —grad ¢. (84)

We assume also that p is a function of p only. Then the equations of motion may be integrated
(Lamb 1932, §20) to give 2% f

52——%u2+gz~1’= 0, (85)

where ¢ contains an arbitrary function of the time ¢ and where

rdp

P= . 86
Ps IO ( )
We assume, lastly, as the relation connecting p and p,
@b _ o
21; = ¢ = constant, (87)
that is, the velocity of sound ¢ in the medium is constant. Then from equation (86)
p—c " cr0g (o). (38)
Pc
Now the equation of continuity may be written
D
D’; pV2 = 0, (89)
where D/Dt denotes differentiation following the motion. Hence
1 Dp D
20 — =
V2 = 7; (1og ), (90)
~ 1 DP
20—
and so from (88) Vi = 2 Di (91)
On climinating P between equations (85) and (91) we have
d¢
c2V2 99 _1y2
Vi = Dt(at :u +gz)
24 0 J i
= Tﬁg——a—t(%u?)+u.grad £~u.grad (—%—uz)~g£. (92)
] b _ .9 9 e
But - u.grad =y (grad ¢) = % (3v?) (93)
~ PP o 0 9 1.0 —
Hence Fr Vip—g g5 a 1u?)—u.grad (4u?) = 0. (94)

This is our differential equation for ¢. We consider now the conditions to be satisfied at the

boundaries. o
The boundary condition in the plane z = £ is simply
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THEORY OF THE ORIGIN OF MICROSEISMS 19
At the free surface z = { we have p = p, and therefore
P,_,=0. (96)
Thus from equation (85) (%%—%u“— gz) . = 0. (97)
Since a particle in the free surface always remain: in the free surface we have also
(%1;) L= (98)
and so from (91) (V29),_¢ = 0. (99)

Equations (97) and (99) are to be satisfied at the surface z = {. It is more convenient, how-
ever, to replace these by conditions to be satisfied in the plane z = 0. This may be done by
expanding the equations in a Taylor series as follows:

% P4 o ) B
(az"fu) +€((?taz 9z T8) Tl (100)

and (V2¢)z=0+§(a—z v2¢) =0, (101)

In order to define the solution completely it is necessary to add a further condition derived
from the assumption that the origin is in the undisturbed free surface. Since the mass con-
tained below the free surface is the same as in the undisturbed state we have

A rh A rh
f dxf pdz=f dxf podz, (102)
o Jg o Jo
where a suffix 0 denotes the value in the undisturbed state. Equation (102) may be written
Ak At
f dxf (0—po) dz—f dxf pdz = 0. (103)
o Jo o Jo

In the second term let p be expanded in a Taylor series from z = 0. After integrating with
respect to z we have

A A dp

f d f (p—p,) dz— f dx[gpz=o+%§2(3-z) +] —o. (104)
2z=0

From equatlons (85) and (88), p is given in terms of ¢ by
plp, = €PlFt = @p/or-tut+gallct (105)
so that Polps = €841, (106)

We also have, from (87),

| b—ps=p—p); (107)
bo—b5 = S*p, 5L, (108)

We seek solutions for ¢ by a method of successive approximations. Let
¢ = efy+e*hy+
u=eu,+eu,+...,
{=eli+e+..., (109)

p—Po = €py+€hy+ ...,
P—=Po = 6P1+62P2+ zn

3-2
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20 M. S. LONGUET-HIGGINS ON A

where ¢ is a small parameter. On substituting in equations (94), (95) and (101) and equating
coeflicients of the first power of ¢ we have -

2
%%1_62V2¢1“ % =0,

(%) —o, ‘ (110)

(V261) 220 =0,
and from equations (84), (100), (105) and (107)
u, = —gradg,,

gh="- (ag; )Z o’ (111)

pilps = oy /ps = ¢‘ e?rz,

where y = g/2¢2. Similarly for the secondapproxm]atlon we find

vy, g~ L (D),
(). e
(Vo= =45 V) |
and : u, = —grad ¢,,
st == (3=, cl(g;;;)z v (13)

Dalps = Epolps = % 1u%+ (0¢ ) ]e%’z.

On substituting for p and {in equation (104) and equating coefficients of ¢ and ¢? we obtain
the further conditions on ¢, and ¢,

. 2 f d f d:%reney [ dx(agi’)z —0 (114)
2y f d J dz ¢2e27’z+ f dx(a[;i?)z 0
- ny de ZE u2-zc~2(09251)2]ezyz+f:dx[%u%+§%%g—z2—%—§g—2(a£)] . (115)

Suppose that ¢ and { are any periodic functions satisfying equations (94), (95), (100) and
(101). If P and p are defined by (105) then these equations imply also (89), (96) and (98).
Provided grad P is not identically zero, (96) and (98) show that z = { is a surface moving
with the fluid. But since the equation of continuity (89) is satisfied, it follows that the left-
hand side of (102), (103) or (104) is at most a constant. Hence any periodic solution ¢, = ¢¥
of equations (110) must make the left-hand side of equation (114) a constant, say C§. Then

a solution of (114) is given by g = gt CFeh, (116)
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THEORY OF THE ORIGIN OF MICROSEISMS 21

But this also satisfies equations (110). Hence if ¢¥ is any periodic solution of (110) a solution
of all four equations (110) and (114) may be found by adding to ¢¥ a constant multiple of ¢
(that is, by increasing the pressure uniformly). Similarly if ¢¥ is any periodic solution of
(112) a solution of all four equations (112) and (115) may be found by adding to ¢* a con-
stant multiple of 7. These results may be verified directly by differentiating equations (114)
and (115) with respect to ¢ and using equations (110) and (112).

4-2. Fuirst approximation and period equation

Let us assume for ¢, a simple progressive wave of the form

1 = Z(z) e®r D, (117)

where £ = 2n/A, 0 = 27/ T and Z is a function of z only. Writing
' Z=e"2Z/(z), (118)

and substituting in the first of equations (110) we find

a*Z

"ZJZ‘-*Z‘I—“ZZI = 0, (119)
where | a? = k2—02[c2 492, (120)
Assuming a = 0 we have Z, = Ade¥*Bez, (121)

where 4 and B are constants, and hence
¢1 — [A e—(y—a)z+B e—('y+oc)z] ez'(kx—#o‘t). (122)
From the last two of equations (110) we have two simultaneous equations for 4 and B:

—(y=a) eI A~ (y+0) "B = 0,)

{(y—a) =k} A+{(y+2)?— k3 B = 0. (125)
Let A(o, k) denote the determinant of these equations, so that
A(@, ) = = (7—a) {(y+0)—E2} "0t (y 1) {(p )2 — K3 v
= —2e " [y(y*—a®—k?) sinh ah + a(y2 — a2+ k?2) cosh ak]. - (124)
In order that non-zero solutions of (123) may exist, A(s, k) must vanish, giving
Sah) =ahcothah— P(ah)2—Q = 0, (125)
where P—-£,, Q=yh(1—Pyh). | (126)

If r and f are given, (125) is an equation for determining a and hence £ and 1. When a/ tends
to zero, f tends to the finite value (1— @), which will be assumed to be positive. When a/
is large and positive f(ak) is negative. But, writing 7 = 242, we may easily show that d*f]dy?
is always negative when « is real, so that f has only one positive zero, which corresponds
to a wave of gravity type. There are an infinity of imaginary zeros, each corresponding to
a wave of compression type (Whipple & Lee 1935). It may also be shown that 1 (ak) has no
complex zeroes.

We shall now assume that « is the positive real root of equation (125). Since /] (yh) is positive

it follows that y2<a?, k2>0%/c2>0, (127)
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22 M. S. LONGUET-HIGGINS ON A
so that the corresponding value of £ is real. Then from equations (123) we have
¢1, —_ [(}, +OL> e—och—('y—zx)z_ (7, ——06) eahf(y+oc)z] ez'(kx+o‘l)_ (128)

This solution also satisfies equation (114). Since the equations for the first approximation
are all linear the sum of any number of solutions is also a solution. We may therefore take as
our first approximation

¢y = [(y+a) em=r=92— (y —q) e*h=r+0)2] [p, sin (kx— ot) +bysin (kx+02)],  (129)
representing two waves of the same wave-length travelling in opposite directions.

4-3. Second approximation

After substituting in equations (112) and (115) and simplifying we find the following
equations for ¢,:

32¢2 62V2¢2 __ga¢2

FI2 0z
— [C@ 2712 1. CO g-2r+z 900 o~2] [B2 sin 2(kx — at) — b3sin 2(kx—+o1)]
[ 6200124 O ¢=2r+0)_ 90O ¢~272] 26, by sin 20, (130)
¢,

72 = 131
( 0z )z=h 0, ( )
(V24,)._o — D[b3sin 2(kx—at) — b3 sin 2(kx |- 0t) + 26, b,sin 20¢], (132)
2 | " i [ " 492002 f Adx(%) — EO(B2+83) + E®2b, b, cos 201, (133)

0 0 ot 0 at 2=0

where CO, CA, ..., C®, D and E® are constants given by

C(l) — __0-{(),__,“)2_/(:2} (.},_’_“)2 e—ZOLh, C(4) J— 0'{(7—06)2+k2} (y+a>2 e—2ach’
CO = —o{(y+-a)—RY (y—a2e, 0O = —o{(y+a)2+k (y—a)?e2, | (134)

00— ol =K} (P—ad),  CO= gl ek (o),
and ' D= —%yaz(y2~a2), E®D = —2a?(y?—0a?) (135)

(the value of E® will not be required). We first eliminate the right-hand side of equation
(130) by the substitution

B, — [FO e-20-0)z_ F® e~2r+dz_9F® =27 [b3sin 2(kx — of) — b3sin 2(kx+ o)
| [F® 20—z F®) e=2r+a)z_ 9F® ¢~2v2] 2b b,sin 201 + ¢, (136)

where
cm
FO —
e (S S T Rk
c®
(2) = 137
R TR (RN S T ATk (157)
c®
3) —
F —40%— 4% (2 —K?) +2gy°

J
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THEORY OF THE ORIGIN OF MICROSEISMS 23
and F@ Cc® )
— 402 —4c*(y —a)?+2¢(y —a)’
i co
- —402—4(y+a)?+2(y+a)’ ( (138)
F6 — co :
—40%—4c%y2 - 2gy
This gives
32 ’ , a ’
_ng_czvz%__g% =0, (139)
(%%) = GOBsin2(kx—ot) —bjsin 2k +-00)] + G@2b, bysin 201, (140)
(V243) ;o0 = (D+HD) [62sin 2(kx — ot) — b}sin 2(kx+at) |+ (D + H®) 2b, by sin 20t, (141)
S X0
2y j d f 42?02 vz 4 J dx(—2) — EO(b3 4 43) + (ED ) 2b, b, cos 20t, (142)
o Jo 0t o \0¢/.
where GO = 2(y—a) e=Xr-91 FO 1 2(y +¢) e~ 2r+)h FO) _ gy =27 FO),
GO = 2(y —a) e~ 2r-0 F@ L 2(y +q) ¢~ Xr+0h FG _ 4y e=2rh F«s),} (143)
and HO = — 4{(y—a)2— k2 FO—4{(y+a)2—k%} FO +8(y2—k2) FO),
H® — —4(y—a)2FD_4(y +q)2 F® 1 8)2FO), (144)
We now write
B = [JW e~0=)z  JO e=r+a)7] [bsin 2(kx — ot) — b3sin 2(kx -+ ot)]
+[J®P e~ =)z 4 JB e-r+a)2] 2h b, sin 20t + Py, (145)
where a'? = 4k2—402[c?+y?, &' = —40%[c2+ 92, (146)

and JO, J@, J® and J® are to be chosen so as to reduce the right-hand sides of equations
(140) and (141) to zero. We must have

__(7,___“/) e~(y—a)h J) _ (},_}_“l) e~ (y+a)k J2) — G(l),
{(r—0')2— 483 JO -+ {(y+a)2— 4k} J® — D+H<1>,} 1
and —(y—o") e JO— (y+a) e+ TG = GO, (148)
(}’——06”)2‘](3) + (7+0‘//)2 JW = D—I—H(z),
ivi w _ {+o)?— 4B} GO+ (y+a') e+ (D + HY)
Jo - (y—o) =4k GO+ (y—a') =0~ (D + HD)
B A(20, 2F) | ;
and JO — (y+a")2GO+ (y+a") e+t (D - H®)
B A(20,0) ’ »
(150)

g (—=%)P GO (y—a") e (D + H?)
N A(20,0) >
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24 M. S. LONGUET-HIGGINS ON A
where A(20,2k) = —2e 7" [y(y?—a'2—4k?) sinh &'+ o' (y>—a'?) cosh a'h],
A(20,0) = —2e 7 [y(y2—a"?) sinh a"h+a" (2 —a"?) cosh «" 4], }
provided neither A(2¢, 2k) nor A(2¢, 0) vanishes. Now if # is any real number we have
A(Oo, 0k) = —2 e 7ksinh fh[y(1 —2k%2/0?) + f coth fh] 0202/, (152)
where f? = 0*(k2—0?[c?) + 2. (153)
Since (k2—0?/c?) is positive (equation (127)), 2 is a positive, increasing function of §2. But
fcoth Sk is an increasing function of #? when #%>0 and hence is an increasing function of #2.
Equation (152) then shows that A(fo, 0k) cannot vanish for more than one positive value of 6.
But A(o, k) vanishes and therefore A(20, 2k) cannot vanish.
Itis quite possible, on the other hand, that A(2e, 0) may be zero. The physical s1gn1ﬁcance
of this case will be discussed later. For the present it will be assumed that A(2¢, 0) is different

from zero. ,
As a result of our choice of JW), etc., we have for ¢ the following equations:

(151)

02— vy —g 0% g,

892 0z
a¢5 (154)
(07)2 =h B O’
(V203) =0 = 0,

mjcmfdﬂw%qu'w(w) — EW(63-1b3) | (E® 4T+ K) 2b, b, cos 20t, (155)
z=0

where K is a constant. Now it was shown earlier that a solution of all four equations (112)
and (114) could be obtained by adding a constant multiple of ¢ to any given solution of (112).
It follows, by subtraction, that a solution of all four equations (154) and (155) may be obtained
by adding a constant multiple of ¢ to any solution of (154). But (154) are satisfied by ¢5 = 0.

Hence we have "= C"t, (156)
where on substitution in (155) we find

Aeh C" = EM(h3+b3). (157)
We have incidentally shown that ~ E@+74K = 0. (158)

We therefore have finally
Gy = [FW 202 ) e=202_ QF®)] e~2v2 [h2sin 2(kx — o) — b3 sin 2(kx + 01) ]
+ [F® ez O =22z 2O e=2r22b, b, sin 20t
+[JVe¥z JDe~*2] e=72 [bisin 2(kx— ot) — b3sin 2(kx + i) ]
+ [P Xz JB e=%Z] 772 2h, b, sin 204
+ EOf~Ye=2vh (b2 +b32) t. (159)
4-4. Discussion
For ocean waves we may take

g=098x10%cm./sec., ¢ = 1-4x10%cm./sec. (160)
o= 0-5sec.”1, h < 10%cm.
This gives Pyh=1-0x107% yh<2:5x1072 (161)

and so - Q =9yh(1—Pyh)<2:5x1072. (162)
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THEORY OF THE ORIGIN OF MICROSEISMS 25
Since a/ coth as>1 for all real values of a, equation (126) shows that Pa/ is of the same order
as cothah. Hence yla — Pyh/Pah=10-4, (163)
Our method will be to evaluate the constants in equation (159) by expanding in powers
of y/a. From (126) we have cothah — Pak[1+0(y/a)], (164)
so that 0%/c? = 2ya/Pah = 2yatanh ah[1+ O(y/a)] (165)
and k% = a?[142(y/a) tanh ak+ O(y/a)?]. (166)

Hence, retaining only the terms of highest order in y/a, we find

3 a—ahgi 3
3 pah oy h }l 3
FO ?%?COZIHHZ.TZ ,  FO— Z{;‘_‘-em tanhah, | (167)

3 3
F® — e tanh a/, FO — e tanh oc/l,
o 20

J

JO — _§O_('f £~ﬁ_ J® — Of e—a"h” cosh 3ak
4¢ sinh? ah’ o cosha’h coshah’
Jo — _Bat e J@ _ at  e"  cosh3ah (168)
" 4¢ sinh?ah’ " o cosha’h coshah’
EO = at, o =da?, o =—do?/c (169)

When 6,6, 0 the first two terms in equation (159) are negligible compared with the
tourth. If we also neglect quantities of order y (though not those of order (ya)* k), ak, o'k, "k
and e may be replaced by k4, 2kk, 2ich/c and 1 respectively, and we have

0% = gk tanh kh, (170)
ocoshk(z—nh . . .
¢y = 7c_0_s—irﬁ(1—kh_) [a, sin (kx — ot) —aysin (kx+-0t) ], (171)

4, — _ 30 cosh 2k(z—h)

278 sinh*kh ’

o cosh3kh  cos20(z—4h)/c
‘8sinh?kk coshkh  cos 20h/c

[a}sin 2(kx— ot) — a3sin 2(kx+ot)]

2a, a,sin 20t (172)

o a?+ad}
T asinhzkh 7
a g
where Y= oprsmh AT %= ofzsimn kil (173)

Let A, and A, denote the wave-lengths of a gravity wave and a compression wave respec-
tively. Thus A, = 2alk, A =2mjo, AJA, = (y/a)! tanh!ah. (174)
When z is less than say }A,, equations (170), (171) and (172) show that the motion is in-
dependent of ¢ and therefore unaffected by the compressibility of the water. When z is
comparable with 4,, both e7#2 and e™* are small, and so from equation (172) the pressure
ps 1s given by »
£2 — — 9a,a,0?%cos 20t. (175)

s

Vol. 243. A. 4
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26 M. S. LONGUET-HIGGINS ON A

Finally, when z is of the same order as A, the motion reduces to the compression wave

¢2=

This wave may be regarded as being generated by the unattenuated pressure variation
(175). When cos 20%/¢ (or more exactly A(20,0)) is zero, ¢, becomes infinite, a situation
corresponding to resonance. The necessary condition for resonance is that

2hjc = (n+3)m (=0, 1,2,...), (177)
thatis, that the depth should be about (324 1) times the length of the compression wave (176).

The ocean may therefore be divided into two regions, namely, (1) a surface layer where

thickness is of order A,, where the motion is controlled by gravity alone and is the same as ‘
if the water as a whole were incompressible, and (2) the main part of the ocean where the
motion is small and controlled only by compressibility. The distinction of two such regions
is probably valid in more general types of wave motion. In equation (94) the gravity term
g04/0z is in general small compared with the compressibility term ¢2V2$. It is only near the
free surface, where V24 vanishes (equation (99)), that gravity predominates. The pressure
variations at a depth A,, that is, in the lower part of the surface layer, are of order po?a?,
where ¢ is the mean amplitude at the free surface. These will produce compression waves in
which the displacements are of order 4?/A,. But the latter will be small compared with the
vertical displacement of the centre of gravity of the surface layer, which is of order a2/A,,
and hence will not affect the motion in the surface layer.

_ocos20(z—h)fc

in 20¢. 6
cos 20%/c sin 20t (176)

5. THE DISPLACEMENT OF THE GROUND DUE TO SURFACE WAVES

In the present section we shall estimate the displacement of the ground due to a given storm
at sea. Since observations are not made in the storm area itself, it is not appropriate to con-
sider the displacement of the sea bed due to an infinite train of waves passing overhead. The
storm is more correctly considered as a disturbance of finite area from which energy is
propagated outwards in all directions.

The velocities of seismic waves in the sea bed being comparable with the velocity of
sound in water, the general results suggested in §4-4 are likely to remain true when the
elasticity of the sea bed is also taken into account. Thus the mean pressure at a depth of say
41, over any given area of the sea surface may be derived as in § 3, and the amplitude of the
elastic waves may be calculated as though this pressure distribution were applied to the
upper surface of the ocean. Since 4,/4, is of the order of 1072, the storm area may be divided
into a number of squares § whose side 2R is large compared with 4, but only a fraction, say
less than one-half] of the length of an elastic wave in the sea bed. Thus the amplitude of the
compression waves from any given square § will be of the same order of magnitude as if
the whole force were concentrated to a point at the centre of the square. The displacement
from the whole storm may then be found by summing the energies from all the different
squares.

5-1. The displacement due to a concentrated force

We take as our model an ocean of constant depth % overlying a sea bed of uniform density
and elasticity. For the reasons given above, we shall be able to make use of the first-order
theory of elastic waves in such a model, which was first investigated by Stoneley (1926).
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THEORY OF THE ORIGIN OF MICROSEISMS 27

The motion due to a concentrated force applied to the upper surface of the water was stated
by Scholte (1943). We shall evaluate the solution rather more completely, using the method
of contour integration due to Sommerfeld (19og) and Jeffreys (1926).

Let p; and p, be the densities of the water and of the sea bed, let ¢ = «, be the velocity of
sound in water and «, and f, the velocities of compressional and distortional waves in the
sea bed. Then if an oscillatory force e??is applied to the surface of the water at the origin, the
vertical displacement of the sea bed measured downwards is given by (Scholte 1943)

; = Jo(ér) £dE
iol Yo za't
W(a,r) et = 271 o 720°C(E) (178)
where 7 is the horizontal distance from the origin, J, is Bessel’s function of the first kind of
zero order and G(£) is given by

G() = (Byf0)* [(262—0?[3)? (62— 0*[03) ~* — 4E3(E7— 0?|f3)*] cosh (E2 — o2 [ocf)*
+(p1/pz) (87— 0?fa}) " sinh (E2—0%/a}) b (179)

In order to ensure that the displacements at infinite depth are bounded, the signs of the
radicals in equation (179) must be chosen so that the real parts of (§2—o0?/a)t and (£2— 02/43)?
are positive or zero. £ being considered as a complex variable, this restricts us initially to
one sheet of the Riemann surface bounded by the cuts

RE—o2jed) = 0, RE—of})’ — 0.  (180)

It will be seen that the choice of sign for (£2—¢?/a?) is immaterial, since cosh (£2—o2/a2) A
and (£2—o?/a}) ¥sinh (§2—o?/a})*h are both single-valued functions of &, analytic at all
points.

When o is real the integral in equation (178) is indeterminate owing to the vanishing of
G(£) at certain points of the real axis. To obtain a correct interpretation we suppose ¢ to be
complex, and take thelimit as arg ¢ tends to zero. The final solution then contains converging
or diverging waves according as arg ¢ tends to zero through positive or negative values.
Since we require the waves to diverge we choose the latter case. Now it can be shown that,
when —4n <arg o <0, G(£) has no zeroes in the sector 0 <<arg{<<4m—oa. There are therefore
no zeroes on the real axis, and, in the limit when arg o tends to 0, the zeroes of G approach the
real axis from below. Hence the path of integration in equation (178) should be indented
above the real axis near the zeroes of G (see figure 15). Further, the cuts in the £-plane given
by (180) are arcs of rectangular hyperbolas which, as args tends to zero, approach the
positive axis from below (see figure 14). Hence the path of integration should be taken along
the upper side of the cuts.

To evaluate the right-hand side of equation (178) we write

Jo(6r) = §[Hs, (&) +Hi, (6r)] (181)

(for the notation see Jeffreys & Jeffreys 1946, p. 544) and consider the integral in two parts.
When 0 is real it may be shown that G has no complex zeroes. Hence for the part involving
Hs, the contour of integration may be deformed into the imaginary axis from 0 to 00 to-
gether with an arc of infinite radius in the first quadrant. For the part involving Hi, the

path of integration may be deformed into (a) the imaginary axis from 0 to —ioco, (b) a
4-2
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28 M. S. LONGUET-HIGGINS ON A

contour I' enclosing the cuts in the é-plane (see figure 1¢), (¢) small circles enclosing the
zeroes of G(£) in the clockwise sense and (d) an arc of infinite radius in the fourth quadrant.
The contribution from the integrals along the imaginary axis are equal and opposite, while,
since (Jeffreys & Jeffreys 1946)

2\ . . 2\
Hs, (2) ~ (2] e, Hiy(2) ~ (2] e, (182)
07(120_/32 . 0'/(12 0'//92 §2 El
aloy
a b
ojay0py £2 b1 olayaBy £y &
T r
¢ d

Frcurr 1. Contours of integration in the £-plane.

for large | z| and —7+ e<<arg z<<m—e¢, the integrals along the two infinite arcs tend to zero.
By slightly deforming the contour I' as in figure 14, it is easily shown that the contribution
from this part of the integral diminishes at least as rapidly as 7~* when r is large. Hence the
main contribution comes from the neighbourhood of the zeroes, being — 27 times the sum
of the residues of the integrand there. On replacing Hi, by its asymptotic formula (182)
we find

. ot N .
P ilol—Emr+(m+1)m]
Wi(a,r)e pzﬂg/2(2ﬁf)*mz=1€me , (183)
m (/5)2/0) 5/ grln/z
where € =(—) dGENE (184)

and §,,&,, ..., &y denote the positive zeroes of G(£) in descending order of magnitude. It can
be shown that when a; <f, all the zeroes are greater than o/f,. The zeroes of G(£) separate

~ alternately the zeroes of cosh (§2—¢?/af)! h, and if the latter function has » zeroes in the
interval o/f,<<£<o0, then N equals either n» or (n+1). When ¢#%/f, is small there is just
one zero §&,.
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Each term in equation (183) represents a diverging wave of length 27§, and of amplitude
proportional to ¢,. In figure 2 ¢, ¢,, ¢; and ¢, are plotted against ¢//f, for the following

constants: pp=10g/cm3, o =14 km./sec.,} (155)
0o = 2:5g./cm.3, f, = 2-8km./[sec.

and with Poisson’s hypothesis a, = /3, The corresponding values of £, &, & and £, are
given in table 1. It will be seen that ¢, increases rapidly to a maximum at about o//f, = 0-85
before falling away finally to zero. This maximum value occurs when the depth is about
0-27 times the wave-length of a compression wave in water, and may be interpreted as the

1-0
075
0-50

025

0 10 20 30 10 50 60
ah/B, ‘

Ficure 2. The amplitude of the vertical displacement of the sea bed as a function of the depth 4.

effect of resonance. The amplitude does not, however, become infinite owing to the pro-
pagation of energy away from the source of the disturbance. ¢,, ¢; and ¢, show similar
resonance peaks when ¢4/f, = 2:7, 4-1 and 6-3 respectively. There are also maxima in the
earlier parts of each curve. This might be expected from the fact that the group-velocity
curve has two stationary values (Press & Ewing 1948). These do not, however, coincide
exactly with the maxima in figure 2.

We define W2 to be the sum of the squared moduli of the terms in equation (183). Thus

7 g4 Ty LT
 pf(2mr) m§=:1 Cm] ' ‘ (186)

5:2. The displacement of the ground in terms of the frequency spectrum of the waves

From equation (82) we see that the wave motion in any given square S will cause a vertical
displacement ¢ of the ground given by

8 = — Rap(n/k)? f ) f T AL W20, 1) ¢ dudy, (187)

where 7 is the distance from the centre of the square and W(s,7) is given by (183). We shall
now find an expression for the order of magnitude of the right-hand side of equation (187).
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TaABLE 1

(a)
£ B0 ohlp, 0 &1 Bsfo ohlp, 91 &1 Bslo ohlf, 3}
1-0877 0-00 0-191 1-3784 0-89 0-890 1-8439 1-68 0-205
1-0954 0-10 0-206 1-4142 0-92 0-857 1-8974 1-99 0-139
1-1402 0-48 0-368 1-4832 0-99 0-759 1-9494 2-59 0-078
1-1832 0-63 0-565 1-5492 1-06 0-649 1-9748 3:23 0-049
1-2247 072 0-728 1-6125 1-13 0-542 1-9875 3-87 0-034
1-2649 0-77 0-837 1-6733 1-22 0-444 1-9975 4-87 0-021
1-3038 0-82 - 0-894 1-7321 1-33 0-355 2-0000 5-31 0-017
1-3416 0-85 0-908 1-7889 148 0-276 2:0025 5-92 0-014

(%)
& pslo oh/f, 2 Ea o]0 ohff, o & Bo]0 ohip 2
1-0000 1-01 0-000 1-0677 1-58 0-170 1-3784 3-:06 0-351
1-0005 - 1-03 0-038 1-0770 1-72 0-172 1-4142 314 0-316
1-0025 1.04 0-076 1-0863 1-86 0-180 1-4832 3:33 0-256
1-0050 1-06 0-108 1-0954 1-98 0-194 1-5492 3-54 0-206
1-0100 1-09 0-141 1-1402 2-39 0-318 1-6125 379 0-165
1-0198 1-14 0-168 1-1832 2:-58 0418 1-6733 4-09 0-131
1-0296 1-20 0-178 1-2247 270 0-454 17321 4-47 0-101
1-0392 1-28 0-180 1-2649 2-80 0-448 1-7889 4-99 0-076
1-0488 - 1-36 0-177 1-3038 2-89 0-421 1-8439 573 0-054
1-0583 1-46 0-173 1:3416 2-97 0-386 1-8974 6-96 0-034

(©)
&3]0 oh/p, 3 EsBslo oh/f, 3 &3 Bslo ohiB, 3
1-0000 2-83 0-000 1-0488 3-21 0-165 1-2247 4-69 0-330
1-0005 2-84 0-036 10583 ~  3-32 0-163 1-2649 4-83 0-305
1-:0025 2-86 0-070 1-0677 3:44 0-162 1-3038 4-96 0-275
1-0050 2-88 0-098 1-0770 3-58 0-164 1-3416 5-09 0-245
- 1-0100 2:91 0-126 1-0863 373 0-171 1-3784 5-22 0-218
1-0198 2-97 0-151 1-:0954 3-86 0-184 1-4142 536 0-194
1-:0296 3-:04 0-163 1-1402 4-30 0-280 1-4832 567 0-154
1-0392 311 0-166 1-1832 4-53 0-331 1-5492 6:02 0-123

(d)
EiBofo - ohip, €y §Bslo oh/f, Cy EiBolo ohip, Oy
1-0000 4-64 0-000 1-0198 4-80 0-138 1-0677 5-30 0-154
1-0005 4-65 0-031 1-0296 4-87 0-150 1-:0770 544 0-157
1-0025 4-67 0-065 10392 4-95 0-155 1-0863 5-60 0-164
1-0050 4-69 0-090 1-0488 505 0-156 1-:0954 573 0-175
1-0100 473 0-115 1-0583 5-17 0-155 1-1402 6:21 0-250

From the definition given in § 3:3, 4’ (a,v; ¢,) is the frequency spectrum of the hypothetical
free motion in which, at time ¢ = ¢;, { and d{/d¢ take their actual values within § but are
zero outside. When ¢ = #; all the potential energy and nearly all the kinetic energy are
contained inside S. Hence the total energy in the square is given by

9pg(n/k)? f : f _: A" A% dudy = (21/k)2 E, (188)

where E denotes the mean energy per unit area of S. We define the mean amplitude a of
the motion within S as half the height, from peak to trough, of the simple progressive wave
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train having the same mean energy per unit areca. The mean energy of a wave train of
amplitude @ being $pga?, we have from (188)

o — f ) f " A'A™ dud. (189)

When considering a group of waves (see § 3-3) we suppose that all the energy is confined
to a certain range of frequencies and directions characteristic of the group. This range will
be very nearly the same for the ‘blurred’ spectrum 4’ as for the original spectrum 4. Let
Q be the region in which the point P(—uk, —uvk), defining the length and direction of the
wave components of the group, must lie. We also use Q to denote the area of this region.
Then the area of the corresponding region in the (u, v)-plane is 2/k2. Hence the root-mean-

square value 4 of the modulus of 4’ is given by

A20k? — j ) f T AA* dudb, (190)

or from equation (188) y e (191)

The case of most practical importance is when the motion consists of two distinct wave

groups, say 4 and 4;. We denote the mean amplitudes of these groups by ¢, and a, respec-

tively and the corresponding areas in their frequency spectra by €, and €,. The root-mean-
square values of 4] and 4; are given by

| A, = a k[Q}, A, = a,k/Q. (192)
On writing 4" = A]+ 4} in equation (187) we have

8 = —Rdp(nfk)? f f (A +AL) (A + A, ) W (20, 7) %t dudb, (193)
Q1 +Q2
where 4;_, etc., is written briefly for 4j(—u, —v). Since Q, defines a progressive wave
group, it will contain no opposite pair of wave components, nor, similarly, will Q,. Thus
equation (193) reduces to

8 e=tirt — — R (n/k)? f A4} 0 W (20,7) 2o-0t dy do, (194)
Q2
where ;, denotes the region common to ), and —£,, and we have introduced ¢,,, the mean
value of ¢ over Q.

Now it may be assumed that there is no correlation between the phases of wave com-
ponents at different points in the original spectrum 4. The same will in general be true for
the modified spectrum 4', but because of the ‘blurring’ function (equation (81)) there may
be some correlation for points that are close together in the (x,v)-plane. The degree of
correlation will depend on the separation of the points concerned relative to the width of
the blurring function, which we have seen is of order unity. Values of 4(x,v) much closer
than this will be highly correlated, while those much more widely separated will be hardly
correlated at all. Suppose then that the range of integration in (194) is divided into unit
squares and the integration carried out over each square separately. The final result will be
the sum of €,,/£* vectors of random phase and each of the order of magnitude of

8p(m[k)2 A, A,0%,W (20,5, 7). (195)
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32 M. S. LONGUET-HIGGINS ON A

Hence the order of magnitude of 0’ is given by
'~ 8p(nfk)? Ay Ay o Qo) W(20,,,7) 2. (196)

Similarly, if the total storm area is A there will be Ak%/4n? separate squares ' into which the
storm area is divided. Hence the amplitude d of the displacement from the whole storm is

of the order o
0=8p(m|k)? A, Ay 03, (A QY[ 2m) W(20 5, 7) €%, (197)

To the same order of approximation W, which may be the sum of two or more terms, may
be replaced by W (equation (186)). On substituting from equations (192) we have finally

0==dmpay ay 03y (ALdyp/ Y )t W(20y,,7) e, (198)

As we should expect, this formula for ¢ is independent of the size of the squares chosen for
the subdivision of the generating area A. It depends only on the total generating area, on the
mean wave height of each group and on the areas of the corresponding two-dimensional
frequency spectra, defined by €, and €2,. All these are quantities of which rough estimates
can in practice be made. It is interesting to remark that although J increases as the square
root of the area common to ; and — ), it also diminishes with the square root of Q; and £,.
Hence, in general, the more widely the energy is distributed in the spectrum the smaller is
the resulting disturbance.

5-3. Discussion

We proceed now to consider the application of equation (198) in some practical cases.
As was first intuitively suggested by Bernard (19414a), the necessary condition for the
generation of microseisms on the present hypothesis is the interference of groups of waves of
the same wave-length travelling in opposite directions. Although not much is at present known
about the generation of waves by surface winds, observation certainly suggests that a wind
blowing steadily in one direction will in the course of time generate waves or swell travelling
mainly in that direction, or in a direction not differing by more than 45° from it. We must
therefore either look for cases in which two wind systems are in some way opposed, or else
assume the possible reflexion of wave energy from a steep coast.

Bernard suggested that favourable conditions for wave interference would be found at the
centre of a cyclonic depression, where waves originating on all sides of the depression might
be received. It is known that in a circular depression the winds, though mainly along the
isobars, have also a component inwards towards the centre, and in fact observation of sea
conditions in the ‘eye’ of a cyclone tend to confirm this expectation. It is well known that in
such regions relatively low wind velocities may be combined with high and chaotic seas such
as would be characteristic of wave interference.

Suppose then that in the centre of a circular depression in the Atlantic wave energy is
being received equally from all directions with a range of periods between 10 and 16sec.
The wave-length A in deep water being given approximately by A = g7?/2m, where T"is the
period, we have 4; <A <A,, where

A = 1-54 x 10*cm., A, =4-00x10*cm.
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The energy in the frequency spectrum is contained in an annular region lying between the
two circles having their centres at the origin and radii 27/A, and 2w/A, respectively. This
region may be divided by any diameter of the circles into two equal regions €2, and €2,, where

Ql = Qz = le - 2'15 X 10—7 Cm._z.
Assuming A =1000km.2, ¢, =2n/13sec.”!, a, =a,=3m,,

we find that the coefficient of W e%712! in equation (198) is 1:8 x 10! dynes. If also
h=3km., r=2000km.,

we find W(20,,,7) = 1:8 x 10~ cm./dynes, giving as the amplitude of the displacement,
from peak to trough, 2(8| = 6:5x 10-*cm. — 65,

The above estimate shows that the theory is in agreement with observation as regards
the order of magnitude of the expected ground movement. It has been assumed that the
energy is uniformly distributed within the given range of frequencies. Any concentration
of energy within a narrower band in the frequency range would tend in general to increase

the amplitude of the microseisms. It has also been assumed that W is constant over the whole
frequency range. From the chosen value of ¢, we have 20,,4/f, = 1-03, so that, from figure 1,
[Z¢,,]t is 0-69 or about three-quarters of its maximum value. However, since [2c,,]! is never
less thatits value of 0-191 for shallow water, and increases to 0-91 within the frequency range,
the mean value chosen is certainly not a serious over-estimate.

Most cyclonic depressions are themselves in movement over the ocean with a speed com-

~parable to that of the waves. This movement may considerably increase the effective area
of wave interference. For, if the velocity of the depression as a whole exceeds the group
velocity of the waves, the waves generated by winds on one side of the depression and travel-
ling in the same general direction will interfere with those generated at a later time on the
other side of the depression and travelling in the opposite direction. Thus, even if the winds
blew directly along the isobars and only generated waves running strictly in that direction,
there would still be a ‘trail’ of wave interference in the wake of the depression. In general,
therefore, the motion of a depression may be expected to increase the amplitude of the
microseisms generated.

The amplitude of the microseisms due to coastal wave reflexion is more difficult to estimate,
since less is known about the amount of energy reflected from a sloping beach. The reflected
wave is usually hidden from observation by the much larger amplitude of the incoming wave,
although if the crests of the reflected wave are not parallel to those of the incoming wave the
former can sometimes be clearly seen. Effective interference will take place only at those parts
of the coast where the shore-line is perpendicular to the direction of propagation of some
components of the wave group, and the narrower the range of directions of the incoming
waves, the more critically will the amount of reflexion depend upon the direction of the
shore-line. The refraction of the wave crests parallel to the shore-line in shallowing water
will operate in favour of effective wave interference, although the amount of refraction is
small until the depth is less than about half a wave-length.

As an example consider a swell of mean amplitude a; = 2m. and period 12 to 16sec.,
whose direction of propagation lies within an angle of 30°. This gives (), = 1:4 x 10~8cm. "2,

Vol. 243. A. 5
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The direction of the reflected wave energy is then also spread over an angle of 30°. Sup-
posing, however, the shore-line to make a mean angle of 10° with the mean direction of
the incoming waves, only one-third of the angle of the reflected waves overlaps that of
the incoming waves. Thus Q, =14 x1078cm."2, Q, = 047 X 10"8cm."2. If we assume
that the reflected wave extends a distance of 10 km. from the shore with a mean amplitude
equal to 5 9, of that of the incoming wave, and if the effective shore-line is 600 km. in length,
we have A = 6000sq.km., a, = 0-1 m. Taking % = 0, r = 1000 km., we find from (198) that
2] 0| = 0-3¢. This amplitude is rather smaller than that in the case considered previously.
We conclude that the largest microseisms are probably due to wave interference in mid-
ocean, although coastal reflexion may be a more common cause of microseisms of smaller
amplitude. Exceptions may occur for stations near to the coast.

It has been seen that the microseism amplitudes may be increased by a factor of the order
of 5 owing to the greater response of the physical system for certain depths of water. In
practice, with an ocean of non-uniform depth, the amplitude will be affected by the depth
of water at all points between the generating area and the observing station. Since, however,
the energy density is greatest near the source of the disturbance, the depth of water in the
generating area itself may be expected to be of most importance.

In so far as the sea waves must be considered to possess not a single frequency but a spec-
trum of finite width, we may expect that the unequal response of the ocean will cause an
apparent shift of the spectrum towards those frequencies for which the response is a maxi-
mum. In the case of disturbances due to coastal reflexion, which in most instances would
take place in shallow water, less frequency shift is to be expected. On the other hand, the
coeflicient of reflexion will very probably depend both upon the height and wave-length of
the waves. There will probably also be a lengthening of the average wave period with
increasing distance from the storm area, owing to the more rapid viscous damping of the
higher frequencies in the spectrum. Evidence of this effect has been given by Gutenberg

(1932).
6. CONCLUSIONS

Unattenuated pressure variations of the type discovered by Miche in the standing wave
are a phenomenon of more general occurrence. They are due essentially to changes in the
potential energy of the whole wave train. The general condition for fluctuations in the
mean pressure over a wide area of the sea surface is that the frequency spectrum should
contain groups of waves of the same wave-length travelling in opposite directions. The
pressure fluctuations are then of twice the frequency of the corresponding waves and are
proportional to the product of the wave amplitudes. Waves of compression in the ocean and
sea bed should be set up, which may be of sufficient amplitude to be recorded as microseisms.
For certain depths of the ocean the displacements will be increased by a factor of the order
of 5 owing to resonance. '

On the present theory suitable conditions of wave interference would arise near the centre
of a cyclonic depression, as suggested by Bernard, but more particularly if the depression is
moving rapidly. The effect of wave interference over deep water would be probably greater,
under favourable conditions, than the effect of coastal wave reflexion, though the latter
may be the determining factor for stations near to the coast. The periods of the microseisms
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should be half those of the corresponding waves, though an apparent shift in the frequency
spectrum may be expected owing to the variation of the frequency response with the depth
of the ocean and to the more rapid damping of the higher frequencies.

I should like to express my thanks to Dr G. E. R. Deacon of the Admiralty Research
Laboratory for suggesting the subject of the present investigation and for his encouragement
during the early stages. I am much indebted to Professor H. Jeffreys for many valuable
suggestions, and to him and to Dr R. Stoneley for advice in the preparation of this paper.
Publication is by kind permission of the Admiralty.
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